Find, compare & contact
Bacampicillin
API Manufacturers & Suppliers
Join our notification list by following this page.
Click the button below to find out more
Click the button below to switch over to the contract services area of Pharmaoffer.
Looking for Bacampicillin API 50972-17-3?
- Description:
- Here you will find a list of producers, manufacturers and distributors of Bacampicillin. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
- API | Excipient name:
- Bacampicillin
- Synonyms:
- Bacampicilina , Bacampicilline , Bacampicillinum
- Cas Number:
- 50972-17-3
- DrugBank number:
- DB01602
- Unique Ingredient Identifier:
- 8GM2J22278
About Bacampicillin
Why are people looking for Bacampicillin? Bacampicillin is a prodrug of ampicillin and is microbiologically inactive. It is absorbed following oral administration. During absorption from the gastrointestinal tract, bacampicillin is hydrolyzed by esterases present in the intestinal wall. It is microbiologically active as ampicillin, and exerts a bactericidal action through the inhibition of the biosynthesis of cell wall mucopeptides. It is used to cure infection of upper and lower respiratory tract;skin and soft tissue;urinary tract and acute uncomplicated gonococcal urethritis etc.
Ask the supplier for a certificate of analysis to find out more about the quality of Bacampicillin.
Bacampicillin is a type of Penicillins
Penicillins belong to the subcategory of pharmaceutical active pharmaceutical ingredients (APIs) and play a crucial role in the treatment of various bacterial infections. They are a class of antibiotics derived from the fungus Penicillium, and are widely used in the pharmaceutical industry.
Penicillins exert their antibacterial effect by inhibiting the formation of bacterial cell walls. They target a specific enzyme, called transpeptidase, which is responsible for cross-linking the peptidoglycan chains in the bacterial cell wall. By blocking this process, penicillins weaken the cell wall, leading to its rupture and subsequent bacterial death.
These APIs are classified into several subclasses, such as penicillin G, penicillin V, and extended-spectrum penicillins. Each subclass has unique characteristics and mechanisms of action. Penicillin G, for example, is effective against a broad range of Gram-positive bacteria, while penicillin V is primarily used for oral administration.
The pharmaceutical industry produces penicillins through a fermentation process using Penicillium strains. The obtained penicillin products are then isolated, purified, and formulated into different dosage forms, including tablets, capsules, and injectables.
Penicillins have been instrumental in the treatment of various infections, including respiratory, skin, urinary tract, and sexually transmitted infections. However, it's essential to note that some bacteria have developed resistance to penicillins through different mechanisms, such as the production of beta-lactamases. As a result, pharmaceutical companies have developed combination therapies and modified penicillins to combat antibiotic resistance effectively.
In summary, penicillins are a vital subcategory of pharmaceutical APIs that provide effective treatment options for bacterial infections. Their diverse subclasses, mechanisms of action, and formulations contribute to their widespread use in the medical field.
Bacampicillin (Penicillins), classified under Antibacterials
Antibacterials, a category of pharmaceutical active pharmaceutical ingredients (APIs), play a crucial role in combating bacterial infections. These APIs are chemical compounds that target and inhibit the growth or kill bacteria, helping to eliminate harmful bacterial pathogens from the body.
Antibacterials are essential for the treatment of various bacterial infections, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, and more. They are commonly prescribed by healthcare professionals to combat both mild and severe bacterial infections.
Within the category of antibacterials, there are different classes and subclasses of APIs, each with distinct mechanisms of action and target bacteria. Some commonly used antibacterials include penicillins, cephalosporins, tetracyclines, macrolides, and fluoroquinolones. These APIs work by interfering with various aspects of bacterial cellular processes, such as cell wall synthesis, protein synthesis, DNA replication, or enzyme activity.
The development and production of antibacterial APIs require stringent quality control measures to ensure their safety, efficacy, and purity. Pharmaceutical manufacturers must adhere to Good Manufacturing Practices (GMP) and follow rigorous testing protocols to guarantee the quality and consistency of these APIs.
As bacterial resistance to antibiotics continues to be a significant concern, ongoing research and development efforts aim to discover and develop new antibacterial APIs. The evolution of antibacterials plays a crucial role in combating emerging bacterial strains and ensuring effective treatment options for infectious diseases.
In summary, antibacterials are a vital category of pharmaceutical APIs used to treat bacterial infections. They are designed to inhibit or kill bacteria, and their development requires strict adherence to quality control standards. By continually advancing research in this field, scientists and pharmaceutical companies can contribute to the ongoing battle against bacterial infections.