Cambinol API Manufacturers

compare suppliers & get competitive offers

teaser-1024x654-1
No suppliers found
Sorry, there are currently no suppliers listed for this ingredient. Hopefully we can help you with other ingredients.
Notify me!
Want to be the first to find out when a supplier for Cambinol is listed?

Join our notification list by following this page.

List your company
Are you a supplier of Cambinol or other APIs and are you looking to list your company on Pharmaoffer?

Click the button below to find out more

Find CDMO
Looking for a CDMO/CMO that can help you with your pharmaceutical needs?

Click the button below to switch over to the contract services area of Pharmaoffer.

Looking for Cambinol API 14513-15-6?

Description:
Here you will find a list of producers, manufacturers and distributors of Cambinol. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
API | Excipient name:
Cambinol 
Synonyms:
 
Cas Number:
14513-15-6 
DrugBank number:
DB15493 
Unique Ingredient Identifier:
8S2PHY4FNC

General Description:

Cambinol, identified by CAS number 14513-15-6, is a notable compound with significant therapeutic applications. Cambinol is a beta-naphtol derivative that inhibits NAD-dependant deacetylases to reduce cell survival under stress. This activity is currently being investigated for its use as a cancer treatment.

Mechanism of Action:

Cambinol functions by: Cambinol inhibits the NAD-dependant deacetylases SIRT1 and SIRT2, members of a protein family known as sirtuins. Inhibiting SIRT1 and SIRT2 while cells are under stress increases acetylation of p53, Ku70, and Foxo3a. This inhibition sensitizes cells to the action of drugs like and , not just other drugs that damage DNA. Although the mechanism of this sensitizing is not defined, it is not dependent on p53, Ku70, or Foxo3a. The independent mechanism suggests the existence of more molecular targets. Cambinol is noncompetitive against NAD and competitive against H-4 peptide, substrates of SIRT2. Inhibiting SIRT2 increases the acetylation of tubulin. Cambinol also increases the acetylation of BCL6, a protein necessary for oncogenesis. Cambinol is also a weak inhibitor of SIRT5. This mechanism highlights the drug's role in inhibiting or promoting specific biological pathways, contributing to its therapeutic effects.

Categories:

Cambinol is categorized under the following therapeutic classes: Pyrimidines. These classifications highlight the drug's diverse therapeutic applications and its importance in treating various conditions.

Experimental Properties:

Further physical and chemical characteristics of Cambinol include:

  • Water Solubility:<0.1mg/mL

Cambinol is a type of Anticancer drugs


Anticancer drugs belong to the pharmaceutical API (Active Pharmaceutical Ingredient) category designed specifically to combat cancer cells. These powerful medications play a crucial role in cancer treatment and are developed to target and destroy cancerous cells, preventing their growth and spread.

Anticancer drugs are classified based on their mode of action and can include various types such as chemotherapy drugs, targeted therapy drugs, immunotherapy drugs, and hormonal therapy drugs. Chemotherapy drugs work by interfering with the cell division process, thereby inhibiting the growth of cancer cells. Targeted therapy drugs, on the other hand, are designed to attack specific molecules or genes involved in cancer growth, minimizing damage to healthy cells. Immunotherapy drugs stimulate the body's immune system to recognize and destroy cancer cells. Hormonal therapy drugs are used in cancers that are hormone-dependent, such as breast or prostate cancer, to block the hormones that fuel cancer cell growth.

These APIs are typically synthesized through complex chemical processes in state-of-the-art manufacturing facilities. Stringent quality control measures ensure the purity, potency, and safety of these drugs. Anticancer APIs undergo rigorous testing and adhere to stringent regulatory guidelines before being approved for clinical use.

Due to their critical role in cancer treatment, anticancer drugs are in high demand worldwide. Researchers and pharmaceutical companies continually strive to develop new and more effective APIs in this category to enhance treatment outcomes and minimize side effects. The ongoing advancements in the field of anticancer drug development offer hope for improved cancer therapies and better patient outcomes.