Methoxyamine API Manufacturers

compare suppliers & get competitive offers

Pharmaoffer_donkere_achtergrond
No suppliers found
Sorry, there are currently no suppliers listed for this ingredient. Hopefully we can help you with other ingredients.
Notify me!
Want to be the first to find out when a supplier for Methoxyamine is listed?

Join our notification list by following this page.

List your company
Are you a supplier of Methoxyamine or other APIs and are you looking to list your company on Pharmaoffer?

Click the button below to find out more

Find CDMO
Looking for a CDMO/CMO that can help you with your pharmaceutical needs?

Click the button below to switch over to the contract services area of Pharmaoffer.

Looking for Methoxyamine API 67-62-9?

Description:
Here you will find a list of producers, manufacturers and distributors of Methoxyamine. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
API | Excipient name:
Methoxyamine 
Synonyms:
 
Cas Number:
67-62-9 
DrugBank number:
DB06328 
Unique Ingredient Identifier:
9TZH4WY30J

General Description:

Methoxyamine is a chemical compound identified by the CAS number 67-62-9. It is known for its distinct pharmacological properties and applications.

Indications:

This drug is primarily indicated for: Investigated for use/treatment in cancer/tumors (unspecified). Its use in specific medical scenarios underscores its importance in the therapeutic landscape.

Mechanism of Action:

Methoxyamine functions by: Methoyxamine is investigated for use as an adjunct to alkylating agents, reverse resistance to chemotherapy, and enhancing radiation therapy. Methoxyamine’s proposed mechanism of action is through blocking of the abasic sites (apurinic/apyrimidinic - AP sites) created by the cleavage of base excision repair (BER) glycoslyates. DNA alkylating agents cause cell death through excessive DNA damage by adduct formation. The human mechanism for DNA repair is very efficient and cancer therapeutics which use this mechanism are often ineffective due to resistance by efficient repair mechanisms such as base excision repair (BER). Alkylating agents such as tezmozolomide form methylated DNA adducts such as O6-methylguanine (O6mG), 7-methylguanine (N7mG) and 3-methyladenine (N3mA). O6mG is a cytotoxic and genotoxic adduct which is repaired by O6-methylguanine DNA-methyltransferase (MGMT). O6mG’s cytotoxicity is due to the mismatch repair mechanism (MMR), but cell induced defects in this repair pathway can lead to drug resistance. The N7mG (dominant lesions caused by methylating agents) and N3mA adducts are both repaired by the BER mechanism. Methoxyamine disrupts the BER pathway, increasing the amount of cytotoxic adducts, which results in cell death. Methoxyamine inhibits BER by stabilizing the AP sites created by cleavage of BER glysosylates, forming MX-AP lesions. Methoxyamine may be an effective adjunct to iododeoxyuridine(IUdR) induced radiosensitization and radiation treatment. IUdR is a halogenated pyrimidine which is incorporated into cellular DNA instead of thymidine, which enhances radiotumor sensitivity. Methoxyamine is proposed to have a dual action in this treatment as it alters cell cycle kinetics as well as prevents repair of DNA by BER, allowing increased sensitivity of tumor cells to DNA damage by radiation therapy. The efficiency of cell cycle repair has been shown to be cell cycle dependent, with the G1 phase being second most sensitive to ionizing radiation (the mitotic, M, phase is the most sensitive). Methoxyamine increases the amount of protein 53 (P53) and protein Rb (pRB), senescence factors which cause the cell to remain in the G1 phase. Methoxyamine also creates a stringent checkpoint at the G1/S boundary as well as an insufficient checkpoint at the G2 stage, preventing cells from going into the S phase. The increased number of G1 cells makes methoxyamine treated tumors more susceptible to ionizing radiation. The temozolomide and methoxyamine created lesion MX-AP not only disrupts the BER pathway but inhibits topoisomerase II alpha (topo II), an enzyme necessary for DNA replication, recombination and chromosome segregation. MX-AP sites block DNA replication and interfere with choromosome splitting. It is currently uncertain how what the interaction between topoisomerase II and methoxyamine causes cytotoxicity, but several mechanisms have been proposed, such as MX-AP sites binding to topo II, thus reducing their functionality by forming a toxic complex. This mechanism highlights the drug's role in inhibiting or promoting specific biological pathways, contributing to its therapeutic effects.

Classification:

Methoxyamine belongs to the class of organic compounds known as organooxygen compounds. These are organic compounds containing a bond between a carbon atom and an oxygen atom, classified under the direct parent group Organooxygen compounds. This compound is a part of the Organic compounds, falling under the Organic oxygen compounds superclass, and categorized within the Organooxygen compounds class, specifically within the None subclass.

Categories:

Methoxyamine is categorized under the following therapeutic classes: Amines. These classifications highlight the drug's diverse therapeutic applications and its importance in treating various conditions.

Methoxyamine is a type of Anticancer drugs


Anticancer drugs belong to the pharmaceutical API (Active Pharmaceutical Ingredient) category designed specifically to combat cancer cells. These powerful medications play a crucial role in cancer treatment and are developed to target and destroy cancerous cells, preventing their growth and spread.

Anticancer drugs are classified based on their mode of action and can include various types such as chemotherapy drugs, targeted therapy drugs, immunotherapy drugs, and hormonal therapy drugs. Chemotherapy drugs work by interfering with the cell division process, thereby inhibiting the growth of cancer cells. Targeted therapy drugs, on the other hand, are designed to attack specific molecules or genes involved in cancer growth, minimizing damage to healthy cells. Immunotherapy drugs stimulate the body's immune system to recognize and destroy cancer cells. Hormonal therapy drugs are used in cancers that are hormone-dependent, such as breast or prostate cancer, to block the hormones that fuel cancer cell growth.

These APIs are typically synthesized through complex chemical processes in state-of-the-art manufacturing facilities. Stringent quality control measures ensure the purity, potency, and safety of these drugs. Anticancer APIs undergo rigorous testing and adhere to stringent regulatory guidelines before being approved for clinical use.

Due to their critical role in cancer treatment, anticancer drugs are in high demand worldwide. Researchers and pharmaceutical companies continually strive to develop new and more effective APIs in this category to enhance treatment outcomes and minimize side effects. The ongoing advancements in the field of anticancer drug development offer hope for improved cancer therapies and better patient outcomes.