Find, compare & contact
Phosphocreatine API Manufacturers & Suppliers

teaser-1024x654-1
Contact suppliers
No suppliers found
Sorry, there are currently no suppliers listed for this ingredient. Hopefully we can help you with other ingredients.
Notify me!
Want to be the first to find out when a supplier for Phosphocreatine is listed?

Join our notification list by following this page.

List your company
Are you a supplier of Phosphocreatine or other APIs and are you looking to list your company on Pharmaoffer?

Click the button below to find out more

Find CDMO
Looking for a CDMO/CMO that can help you with your pharmaceutical needs?

Click the button below to switch over to the contract services area of Pharmaoffer.

Looking for Phosphocreatine API 67-07-2?

Description:
Here you will find a list of producers, manufacturers and distributors of Phosphocreatine. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
API | Excipient name:
Phosphocreatine 
Synonyms:
Creatine phosphate , Creatine phosphic acid , Creatine-P , Fosfocreatine , N-(N-phosphonoamido)sarcosine , N-(Phosphonoamidino)sarcosine , N-phosphocreatine , N-Phosphorylcreatine , phosphorylcreatine  
Cas Number:
67-07-2 
DrugBank number:
DB13191 
Unique Ingredient Identifier:
020IUV4N33

General Description:

Phosphocreatine, identified by CAS number 67-07-2, is a notable compound with significant therapeutic applications. Phosphocreatine - or creatine phosphate - is the phosphorylated form of creatine. It is primarily found endogenously in the skeletal muscles of vertebrates where it serves a critical role as a rapidly acting energy buffer for muscle cell actions like contractions via its ability to regenerate adenosine triphosphate (ATP) from adenosine diphosphate (ADP).

Indications:

This drug is primarily indicated for: Phosphocreatine is a naturally occuring substance that is found predominantly in the skeletal muscles of vertebrates. Its primary utility within the body is to serve in the maintanence and recycling of adenosine triphosphate (ATP) for muscular activity like contractions. Given this utility of phosphocreatine to recycle ATP, the most plausible therapeutic potentials for its use involve conditions caused by energy shortage or by increased energy requirements - such as in ischemic stroke and other cerebrovascular diseases. It is important to note however that relatively little clinical research has been done to significantly further the evidence for any such indications, although it is administered intravenously for cardiovascular conditions in some countries. Additionally, because phosphocreatine is not regulated as a controlled substance it is taken as a supplement by some professional athletes as a means to perhaps increase short bursts of muscle strength or energy for professional athletics. Its use in specific medical scenarios underscores its importance in the therapeutic landscape.

Route of Elimination:

The elimination of Phosphocreatine from the body primarily occurs through: Phosphocreatine is eliminated renally. The end result of creatine degredation is the product creatinine, which enters the bloodstream from its storage sites in body muscle. When creatinine enters the renal parenchyma it is filtered in the renal glomerulus to be excreted in the urine. Understanding this pathway is essential for assessing potential drug accumulation and toxicity risks.

Pharmacodynamics:

Phosphocreatine exerts its therapeutic effects through: Creatine is a naturally occurring chemical within the body and is primarily stored in skeletal muscle in both free and phosphorylated forms. Phosphocreatine is the name given to the phosphorylated form of creatine. Additionally, phosphocreatine can also be found in other areas of the body like the kidneys, liver, and brain. In fact, most *in vivo* synthesis of creatine occurs in the liver where amidine groups from arginine are transfered to glycine with the help of the glycine transaminidase enzyme to form guanidinoacetic acid. This acid is then methylated with the methyl group of S-adenosylmethionine via guanidinoacetate methyltransferase to generate creatine. The synthesized creatine is transported to storage sites in skeletal muscle via the bloodstream. The phosphorylation of creatine is reversible in both a forwards and backwards reaction. That is, while phosphocreatine is capable of anaerobically donating a phosphate group to adenosine diphosphate (ADP) to regenerate ATP, at the same time excess ATP can be dephosphorylated during periods of low muscle activity to convert creatine to phosphocreatine. This dual activity in synthesizing phosphocreatine from excess levels of ATP during rest and use of phosphocreatine to regenerate ATP during high activity demonstrates the crucial utility of phosphocreatine in acting as an energy buffer in body mucle cells. Phosphocreatine's fast regeneration of ATP is considered a coupled reaction - in essence, the energy released from transferring a donating a phosphate group from phosphocreatine is used to regenerate ATP. Phosphocreatine consequently plays an essential role in body tissues that have high, fluctuating energy requirments like muscle and brain tissues. The drug's ability to modulate various physiological processes underscores its efficacy in treating specific conditions.

Mechanism of Action:

Phosphocreatine functions by: Adenosine triphosphate (ATP) is the primary source of chemical energy that body muscles use to perform contractions. During such contraction processes, ATP molecules are depleted as they undergo hydrolysis reactions and become adenosine diphosphate (ADP). To maintain homeostasis in muscle activity, the ATP supply of muscles must be regenerated regularly. Phosphocreatine occurs naturally within the body and is capable of regenerating ATP by transferring a high-energy phosphate from itself to ADP, resulting in the formation of ATP and creatine. This kind of regeneration of ATP with phosphocreatine typically occurs within seconds of intense muscular or neuronal effort, acting as a quickly accessible reserve of high-energy phosphates for the recycling of ATP in body muscle tissues. ATP recycling from phosphocreatine is in fact known as the quickest form of ATP regeneration. This mechanism highlights the drug's role in inhibiting or promoting specific biological pathways, contributing to its therapeutic effects.

Classification:

Phosphocreatine belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof, classified under the direct parent group Alpha amino acids and derivatives. This compound is a part of the Organic compounds, falling under the Organic acids and derivatives superclass, and categorized within the Carboxylic acids and derivatives class, specifically within the Amino acids, peptides, and analogues subclass.

Categories:

Phosphocreatine is categorized under the following therapeutic classes: Amino Acids, Amino Acids, Peptides, and Proteins, Cardiac Therapy, Cardiotonic Agents, Cardiovascular Agents, Compounds used in a research, industrial, or household setting, Drugs that are Mainly Renally Excreted, Phosphoamino Acids, Protective Agents. These classifications highlight the drug's diverse therapeutic applications and its importance in treating various conditions.

Experimental Properties:

Further physical and chemical characteristics of Phosphocreatine include:

  • Water Solubility: 3.52 mg/mL
  • Melting Point: 194-195 °C
  • Boiling Point: 449.1±47.0 °C at 760 mmHg

Phosphocreatine is a type of Cardiac stimulants


Cardiac stimulants are a crucial category of pharmaceutical active pharmaceutical ingredients (APIs) used in the treatment of cardiac disorders. These medications are designed to enhance the functioning of the heart by stimulating its electrical impulses and increasing its contractility.

Cardiac stimulants work by targeting specific receptors in the heart, promoting the release of neurotransmitters such as norepinephrine and epinephrine. These neurotransmitters bind to adrenergic receptors, leading to an increased heart rate and force of contraction, which helps improve cardiac output.

One commonly used cardiac stimulant API is Dobutamine. Dobutamine acts primarily on beta-1 adrenergic receptors in the heart, increasing the strength of cardiac contractions while minimizing the impact on heart rate. This makes it a valuable medication in cases of acute heart failure or during cardiac stress testing.

Another well-known cardiac stimulant API is Isoproterenol. Isoproterenol acts on both beta-1 and beta-2 adrenergic receptors, resulting in increased heart rate, contractility, and relaxation of the smooth muscles in the bronchi. It is commonly used in the treatment of bradycardia, heart block, and certain types of asthma.

Cardiac stimulant APIs play a vital role in cardiovascular medicine and are often used in emergency situations or as temporary measures to improve heart function. However, it is important to note that their use requires careful monitoring and should be administered under medical supervision due to potential side effects such as increased blood pressure, arrhythmias, and myocardial ischemia.

In conclusion, cardiac stimulant APIs are a critical category of pharmaceutical ingredients used to enhance heart function. Medications like Dobutamine and Isoproterenol act on specific receptors in the heart, leading to increased contractility and heart rate. While these medications provide important therapeutic benefits, their use should be closely monitored by medical professionals due to potential side effects.