Find, compare & contact
Razuprotafib API Manufacturers & Suppliers

teaser-1024x654-1
Contact suppliers
No suppliers found
Sorry, there are currently no suppliers listed for this ingredient. Hopefully we can help you with other ingredients.
Notify me!
Want to be the first to find out when a supplier for Razuprotafib is listed?

Join our notification list by following this page.

List your company
Are you a supplier of Razuprotafib or other APIs and are you looking to list your company on Pharmaoffer?

Click the button below to find out more

Find CDMO
Looking for a CDMO/CMO that can help you with your pharmaceutical needs?

Click the button below to switch over to the contract services area of Pharmaoffer.

Looking for Razuprotafib API 1008510-37-9?

Description:
Here you will find a list of producers, manufacturers and distributors of Razuprotafib. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
API | Excipient name:
Razuprotafib 
Synonyms:
 
Cas Number:
1008510-37-9 
DrugBank number:
DB16353 
Unique Ingredient Identifier:
0WAX4UT396

General Description:

Razuprotafib, identified by CAS number 1008510-37-9, is a notable compound with significant therapeutic applications. Razuprotafib, also known as AKB-9778, is a small-molecule inhibitor restoring Tie2 activation by inhibiting VE-PTP. In investigations against diabetes and COVID-19, razuprotafib is self-administered by patients through subcutaneous injection.

Mechanism of Action:

Razuprotafib functions by: Razuprotafib inhibits (https://go.drugbank.com/bio_entities/BE0003769) (a negative regulator of Tie2 in diseased blood vessels) by binding and inhibiting the intracellular catalytic domain of VE-PTP that inactivates Tie2. This in turn allows razuprotafib to restore Tie2 activation to allow for enhancement of endothelial function and stabilization of blood vessels. Razuprotafib is being investigated against diabetic vascular complications and acute respiratory distress syndrome (ARDS) in COVID-19. This mechanism highlights the drug's role in inhibiting or promoting specific biological pathways, contributing to its therapeutic effects.

Categories:

Razuprotafib is categorized under the following therapeutic classes: Acids, Acids, Noncarboxylic, Amines, Sulfur Acids, Sulfur Compounds. These classifications highlight the drug's diverse therapeutic applications and its importance in treating various conditions.

Razuprotafib is a type of Anti-diabetics


Anti-diabetics, belonging to the pharmaceutical API (Active Pharmaceutical Ingredient) category, are a group of compounds designed to manage and treat diabetes mellitus, a chronic metabolic disorder characterized by high blood sugar levels. These medications play a vital role in controlling diabetes and preventing complications associated with the disease.

Anti-diabetics encompass a wide range of drug classes, including biguanides, sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors, and glucagon-like peptide-1 (GLP-1) receptor agonists. Each class works through different mechanisms to regulate blood sugar levels and improve insulin sensitivity.

Biguanides, such as metformin, reduce glucose production by the liver and enhance insulin sensitivity in peripheral tissues. Sulfonylureas, like glipizide, stimulate insulin secretion from pancreatic beta cells. Thiazolidinediones, including pioglitazone, improve insulin sensitivity in muscle and adipose tissues. DPP-4 inhibitors, such as sitagliptin, increase insulin release and inhibit glucagon secretion. SGLT2 inhibitors, like dapagliflozin, decrease renal glucose reabsorption, leading to increased urinary glucose excretion. GLP-1 receptor agonists, such as exenatide, enhance insulin secretion, suppress glucagon release, slow gastric emptying, and promote satiety.

These anti-diabetic APIs serve as the foundational ingredients for the formulation of various oral tablets, capsules, and injectable medications used in the treatment of diabetes. By targeting different aspects of glucose regulation, they help patients achieve and maintain optimal blood sugar levels, thus reducing the risk of diabetic complications, such as cardiovascular disease, neuropathy, and nephropathy.

It is crucial for healthcare professionals to prescribe and administer these anti-diabetic medications appropriately, considering factors like the patient's medical history, co-existing conditions, and potential drug interactions. Regular monitoring of blood glucose levels and close medical supervision are necessary to ensure effective diabetes management.

In conclusion, anti-diabetics form a critical category of pharmaceutical APIs used for the treatment of diabetes. These compounds, encompassing various drug classes, work through distinct mechanisms to regulate blood sugar levels and improve insulin sensitivity. By facilitating glucose control, anti-diabetic APIs help mitigate the risk of complications associated with diabetes mellitus, ultimately promoting better health outcomes for patients.