Find, compare & contact
Diphenadione
API Manufacturers & Suppliers
Join our notification list by following this page.
Click the button below to find out more
Click the button below to switch over to the contract services area of Pharmaoffer.
Looking for Diphenadione API 82-66-6?
- Description:
- Here you will find a list of producers, manufacturers and distributors of Diphenadione. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
- API | Excipient name:
- Diphenadione
- Synonyms:
- Cas Number:
- 82-66-6
- DrugBank number:
- DB13347
- Unique Ingredient Identifier:
- 54CA01C6JX
General Description:
Diphenadione is a chemical compound identified by the CAS number 82-66-6. It is known for its distinct pharmacological properties and applications.
Classification:
Diphenadione belongs to the class of organic compounds known as diphenylmethanes. These are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups, classified under the direct parent group Diphenylmethanes. This compound is a part of the Organic compounds, falling under the Benzenoids superclass, and categorized within the Benzene and substituted derivatives class, specifically within the Diphenylmethanes subclass.
Categories:
Diphenadione is categorized under the following therapeutic classes: Anticoagulants, Blood and Blood Forming Organs, Cytochrome P-450 CYP3A Substrates, Cytochrome P-450 CYP3A4 Substrates, Cytochrome P-450 Substrates, Indans, Indenes, Vitamin K Antagonists. These classifications highlight the drug's diverse therapeutic applications and its importance in treating various conditions.
Diphenadione is a type of Anticoagulants
Anticoagulants are a vital category of pharmaceutical active pharmaceutical ingredients (APIs) used to prevent and treat blood clotting disorders. These medications play a crucial role in various medical conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), and atrial fibrillation (AF). Anticoagulants work by inhibiting the formation of blood clots or by preventing existing clots from getting larger.
There are different types of anticoagulants available, including direct thrombin inhibitors, vitamin K antagonists, and factor Xa inhibitors. Direct thrombin inhibitors, such as dabigatran, directly target the enzyme thrombin to hinder clot formation. Vitamin K antagonists, like warfarin, interfere with the production of clotting factors that rely on vitamin K. Factor Xa inhibitors, such as rivaroxaban and apixaban, inhibit the activity of factor Xa, a crucial component in the clotting cascade.
Anticoagulants are commonly prescribed to patients at risk of developing blood clots or those with existing clotting disorders. They are often used during surgeries, such as hip or knee replacements, to minimize the risk of post-operative clot formation. Patients with AF, a condition characterized by irregular heart rhythm, may also be prescribed anticoagulants to prevent stroke caused by blood clots.
While anticoagulants offer significant benefits in preventing and treating clot-related conditions, they also carry potential risks, including bleeding complications. Patients taking anticoagulants require careful monitoring to ensure the right dosage is administered, as excessive anticoagulation can lead to hemorrhage. Regular blood tests and close medical supervision are essential to manage the delicate balance between preventing clots and avoiding excessive bleeding.
In conclusion, anticoagulants are a crucial category of pharmaceutical APIs used to prevent and treat blood clotting disorders. They function by inhibiting clot formation or preventing existing clots from enlarging. While highly beneficial, their use requires careful monitoring to minimize the risk of bleeding complications.