Flutrimazole API Manufacturers

compare suppliers & get competitive offers



Selected filters:

Production region




To view suppliers for this material, you need to be logged in first.






This is because of international laws regarding narcotic materials. Furthermore, the contents of this page are only accessible if you are professionaly active in the pharmaceutical industry. In case you are, it is possible to register on our platform, and after your account is approved by our team you will be able to view suppliers and send your request.



Looking for Flutrimazole API ?

Here you will find a list of producers, manufacturers and distributors of Flutrimazole. You can filter on certificates such as GMP, FDA, CEP, Written Confirmation and more. Send inquiries for free and get in direct contact with the supplier of your choice.
API | Excipient name:
Cas Number:
DrugBank number:
Unique Ingredient Identifier:

Flutrimazole is a type of Antimycotics

Antimycotics, a subcategory of pharmaceutical Active Pharmaceutical Ingredients (APIs), are essential in the treatment of various fungal infections. These powerful medications target and eliminate harmful fungi that can cause infections in humans.

Antimycotics are classified into two main types: systemic and topical. Systemic antimycotics are administered orally or intravenously and work by circulating throughout the body, treating systemic fungal infections that affect internal organs or spread throughout the bloodstream. On the other hand, topical antimycotics are applied externally to treat localized fungal infections such as athlete's foot or yeast infections.

The efficacy of antimycotics lies in their ability to disrupt fungal cell membranes, inhibit the synthesis of fungal DNA or proteins, or interfere with essential metabolic processes specific to fungi. This targeted action minimizes damage to human cells, making these medications relatively safe for patients.

Commonly prescribed antimycotics include azoles, polyenes, allylamines, and echinocandins. Azoles inhibit the synthesis of ergosterol, a vital component of fungal cell membranes, while polyenes bind to ergosterol, resulting in the formation of pores that lead to cell death. Allylamines disrupt the synthesis of ergosterol and inhibit the activity of squalene epoxidase, an enzyme involved in ergosterol production. Echinocandins target the synthesis of β-(1,3)-D-glucan, an essential component of the fungal cell wall.

Antimycotics play a crucial role in the management of fungal infections, offering relief to patients and aiding in their recovery. As with any medication, it is important to follow healthcare professionals' guidance regarding dosage, duration of treatment, and potential side effects to ensure optimal therapeutic outcomes.

Flutrimazole (Antimycotics), classified under Antifungals

Antifungals are a vital category of pharmaceutical active pharmaceutical ingredients (APIs) designed to combat fungal infections. These medications are developed to target and eliminate fungi, including yeasts and molds, which can cause a range of diseases in humans and animals.

Antifungals work by interfering with specific components or processes essential for fungal growth and reproduction. They may inhibit the synthesis of fungal cell walls or disrupt the production of ergosterol, a crucial component of fungal cell membranes. By targeting these key mechanisms, antifungal APIs effectively hinder the growth and spread of fungal infections.

The diversity within the antifungal category is reflected in the various classes of antifungal APIs available. Azoles, polyenes, echinocandins, and allylamines are common classes of antifungals. Each class exhibits unique mechanisms of action and targets specific types of fungi. This diversity enables healthcare professionals to tailor treatment plans to the specific fungal infection, optimizing therapeutic outcomes.

Antifungal APIs find application in various pharmaceutical formulations, including oral medications, topical creams, ointments, and intravenous solutions. They are crucial for the treatment of common fungal infections like athlete's foot, ringworm, vaginal yeast infections, and oral thrush. Additionally, antifungals play a crucial role in managing serious systemic fungal infections that can pose significant health risks, especially in immunocompromised individuals.

Overall, antifungal APIs are indispensable tools in the fight against fungal infections, offering effective treatment options and improving the quality of life for patients suffering from these conditions. With ongoing research and development, the antifungal category continues to evolve, providing innovative solutions to combat the ever-changing landscape of fungal pathogens.